Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Acta Biomater ; 177: 300-315, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340886

RESUMO

The vertebral centra of sharks consist of cartilage, and many species' centra contain a bioapatite related to that in bone. Centra microarchitectures at the 0.5-50 µm scale do not appear to have been described previously. This study examines centrum microarchitecture in lamniform and carcharhiniform sharks with synchrotron microComputed Tomography (microCT), scanning electron microscopy and spectroscopy and light microscopy. The analysis centers on the blue shark (carcharhiniform) and shortfin mako (lamniform), species studied with all three modalities. Synchrotron microCT results from seven other species complete the report. The main centrum structures, the corpus calcareum and intermedialia, consist of fine, closely-spaced, mineralized trabeculae whose mean thicknesses and spacings range from 4.5 to 11.2 µm and 4.5 to 15.6 µm, respectively. A significant (p = 0.00001) positive linear relationship between and exists for multiple positions within one mako centrum. Carcharhiniform species' and exhibit an inverse linear relationship (p = 0.005) while in lamniforms these variables tend toward a positive relationship which does not reach statistical significance (p = 0.099). In all species, the trabeculae form an uninterrupted, interconnected network, and the unmineralized volumes are similarly interconnected. Small differences in mineralization level are observed in trabeculae. Centrum growth band pairs are found to consist of locally higher /lower mineral volume fraction. Within the intermedialia, radial canals and radial microrods were characterized, and compacted trabeculae are prominent in the mako intermedialia. The centra's mineralized central zones were non-trabecular and are also described. STATEMENT OF SIGNIFICANCE: This study's novel result is the demonstration that the mineralized cartilage of sharks' vertebral bodies (centra) consists of a fine 3D array of interconnected plates (trabeculae) and an interpenetrating network of unmineralized tissue. This microstructure is radically different from that in tesserae or in teeth, the other main mineralized shark tissues. Using volumetric synchrotron microComputed Tomography, numerical values of mean trabecular thickness and spacing and their relationship were measured for nine species. Scanning electron microscopy added a higher resolution view of the microstructures, and histology provided complementary information on cartilage and cells. The present results suggest centra microstructure helps accommodate the very large in vivo strains and may prevent damage accumulation during millions of cycles of swimming-induced loading.


Assuntos
Tubarões , Dente , Animais , Corpo Vertebral , Microtomografia por Raio-X , Osso e Ossos
2.
J Mech Behav Biomed Mater ; 136: 105506, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36228402

RESUMO

The centra of shark vertebrae consist of cartilage mineralized by a bioapatite similar to bone's carbonated hydroxyapatite, and, without a repair mechanism analogous to remodeling in bone, these structures still survive millions of cycles of high-strain loading. The main structures of the centrum are an hourglass-shaped double cone and the intermedialia which supports the cones. Little is known about the nanostructure of shark centra, specifically the relationship between bioapatite and cartilage fibers, and this study uses energy dispersive diffraction (EDD) with polychromatic synchrotron x-radiation to study the spatial organization of the mineral phase and its crystallographic texture. The unique energy-sensitive detector array at beamline 6-BM-B, the Advanced Photon Source, enables EDD to quantify the texture within each sampling volume with one exposure while constructing 3D maps via specimen translation across the sampling volume. This study maps a centrum from two shark orders, a carcharhiniform and a lamniform, with different intermedialia structures. In the blue shark (Prionace glauca, Carcharhiniformes), the bioapatite's c-axes are oriented laterally within the centrum's cone walls but axially within the wide wedges of the intermedialia; the former is interpreted to resist lateral deformation, the latter to support axial loads. In the shortfin mako (Isurus oxyrinchus, Lamniformes), there is some tendency for c-axis variation with position, but the situation is unclear because one dimension of the sampling volume is considerably larger than the thickness and spacing of the intermedialia's radially-oriented lamellae. Because elastic modulus in collagen plus bioapatite mineralized tissues varies significantly with both volume fraction of bioapatite and crystallographic texture, the present 3D EDD-derived maps should inform future 3D numerical models of shark centra under applied load.


Assuntos
Tubarões , Animais , Difração de Raios X , Coluna Vertebral , Cristalografia , Colágeno
3.
J R Soc Interface ; 19(194): 20220373, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36128705

RESUMO

Members of subclass Elasmobranchii possess cartilage skeletons; the centra of many species are mineralized with a bioapatite, but virtually nothing is known about the mineral's organization. This study employed high-energy, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS, i.e. X-ray diffraction) to investigate the bioapatite crystallography within blocks cut from centra of four species (two carcharhiniform families, one lamniform family and 1-ID of the Advanced Photon Source). All species' crystallographic quantities closely matched and indicated a bioapatite closely related to that in bone. The centra's lattice parameters a and c were somewhat smaller and somewhat larger, respectively, than in bone. Nanocrystallite sizes (WAXS peak widths) in shark centra were larger than typical of bone, and little microstrain was observed. Compared with bone, shark centra exhibited SAXS D-period peaks with larger D magnitudes, and D-period arcs with narrower azimuthal widths. The shark mineral phase, therefore, is closely related to that in bone but does possess real differences which probably affect mechanical property and which are worth further study.


Assuntos
Tubarões , Animais , Minerais , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
4.
J R Soc Interface ; 17(172): 20200686, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33234061

RESUMO

Hawara Portrait Mummy 4, a Roman-era Egyptian portrait mummy, was studied with computed tomography (CT) and with CT-guided synchrotron X-ray diffraction mapping. These are the first X-ray diffraction results obtained non-invasively from objects within a mummy. The CT data showed human remains of a 5-year-old child, consistent with the female (but not the age) depicted on the portrait. Physical trauma was not evident in the skeleton. Diffraction at two different mummy-to-detector separations allowed volumetric mapping of features including wires and inclusions within the wrappings and the skull and femora. The largest uncertainty in origin determination was approximately 1.5 mm along the X-ray beam direction, and diffraction- and CT-determined positions matched. Diffraction showed that the wires were a modern dual-phase steel and showed that the 7 × 5 × 3 mm inclusion ventral of the abdomen was calcite. Tracing the 00.2 and 00.4 carbonated apatite (bone's crystalline phase) reflections back to their origins produced cross-sectional maps of the skull and of femora; these maps agreed with transverse CT slices within approximately 1 mm. Coupling CT and position-resolved X-ray diffraction, therefore, offers considerable promise for non-invasive studies of mummies.


Assuntos
Múmias , Pré-Escolar , Estudos Transversais , Egito , Feminino , Humanos , Múmias/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Difração de Raios X
5.
Powder Diffr ; 35(2): 117-123, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34219911

RESUMO

Tooth enamel, the outermost layer of human teeth, is a complex, hierarchically structured biocomposite. The details of this structure are important in multiple human health contexts, from understanding the progression of dental caries (tooth decay) to understanding the process of amelogenesis and related developmental defects. Enamel is composed primarily of long, nanoscale crystallites of hydroxyapatite that are bundled by the thousands to form micron-scale rods. Studies with transmission electron microscopy show the relationships between small groups of crystallites and X-ray diffraction characterize averages over many rods, but the direct measurement of variations in local crystallographic structure across and between enamel rods has been missing. Here, we describe a synchrotron X-ray-based experimental approach and a novel analysis method developed to address this gap in knowledge. A ~500-nm-wide beam of monochromatic X-rays in conjunction with a sample section only 1 µm in thickness enables 2D diffraction patterns to be collected from small well-separated volumes within the enamel microstructure but still probes enough crystallites (~300 per pattern) to extract population-level statistics on crystallographic features like lattice parameter, crystallite size, and orientation distributions. Furthermore, the development of a quantitative metric to characterize relative order and disorder based on the azimuthal autocorrelation of diffracted intensity enables these crystallographic measurements to be correlated with their location within the enamel microstructure (e.g., between rod and interrod regions). These methods represent a step forward in the characterization of human enamel and will elucidate the variation of the crystallographic structure across and between enamel rods for the first time.

6.
Connect Tissue Res ; 59(4): 345-355, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29083939

RESUMO

Purpose and Aims: Sea urchin teeth consist of calcite and form in two stages with different magnesium contents. The first stage structures of independently formed plates and needle-prisms define the shape of the tooth, and the columns of the second stage mineral cements the first stage structures together and control the fracture behavior of the mature tooth. This study investigates the nucleation and growth of the second stage mineral. MATERIALS AND METHODS: Scanning electron microscopy (SEM) and synchrotron microComputed Tomography characterized the structures of the second phase material found in developing of Lytechinus variegatus teeth. RESULTS: Although the column development is a continuous process, defining four phases of column formation captures the changes that occur in teeth of L. variegatus. The earliest phase consists of small 1-2 µm diameter hemispheres, and the second of 5-10 µm diameter, mound-like structures with a nodular surface, develops from the hemispheres. The mounds eventually bridge the syncytium between adjacent plates and form hyperboloid structures (phase three) that appear like mesas when plates separate during the fracture. The mesa diameter increases with time until the column diameter is significantly larger than its height, defining the fourth phase of column development. Energy dispersive x-ray spectroscopy confirms that the columns contain more magnesium than the underlying plates; the ratios of magnesium to calcium are consistent with compositions derived from x-ray diffraction. CONCLUSION: Columns grow from both bounding plates. The presence of first phase columns interspersed among third stage mesas indicates very localized control of mineralization.


Assuntos
Lytechinus/química , Minerais/química , Animais , Elétrons , Lytechinus/ultraestrutura , Espectrometria por Raios X , Microtomografia por Raio-X
7.
J Synchrotron Radiat ; 24(Pt 5): 1056-1064, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862629

RESUMO

Dental caries is a ubiquitous infectious disease with a nearly 100% lifetime prevalence. Rodent caries models are widely used to investigate the etiology, progression and potential prevention or treatment of the disease. To explore the suitability of these models for deeper investigations of intact surface zones during enamel caries, the structures of early-stage carious lesions in rats were characterized and compared with previous reports on white spot enamel lesions in humans. Synchrotron X-ray microcomputed tomography non-destructively mapped demineralization in carious rat molar specimens across a range of caries severity, identifying 52 lesions across the 30 teeth imaged. Of these lesions, 13 were shown to have intact surface zones. Depth profiles of fractional mineral density were qualitatively similar to lesions in human teeth. However, the thickness of the surface zone in the rat model ranges from 10 to 58 µm, and is therefore significantly thinner than in human enamel. These results indicate that a fraction of lesions in rat caries possess an intact surface zone and are qualitatively similar to human lesions at the micrometer scale. This suggests that rat caries models may be a suitable analog through which to investigate the structure of surface zone enamel and its role during dental caries.


Assuntos
Cárie Dentária , Esmalte Dentário/química , Síncrotrons , Microtomografia por Raio-X/métodos , Animais , Modelos Animais de Doenças , Humanos , Minerais/química , Ratos
8.
Acta Biomater ; 48: 289-299, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27836805

RESUMO

A large fraction of the volume of Beluga whale (Delphinapterus leucas) teeth consists of cementum, a mineralized tissue which grows throughout the life of the animal and to which the periodontal ligaments attach. Annular growth bands or growth layer groups (GLGs) form within Beluga cementum, and this study investigates GLG structure using X-ray fluorescence mapping and X-ray diffraction mapping with microbeams of synchrotron radiation. The Ca and Zn fluorescent intensities and carbonated hydroxyapatite (cAp) diffracted intensities rise and fall together and match the light-dark bands visible in transmitted light micrographs. Within the bands of maximum Ca and Zn intensity, the ratio of Zn to Ca is slightly higher than in the minima bands. Further, the GLG cAp, Ca and Zn modulation is preserved throughout the cementum for durations >25year. STATEMENT OF SIGNIFICANCE: Cementum is an important tooth tissue to which the periodontal ligaments attach and consists primarily of carbonated apatite mineral and collagen. In optical microscopy of cementum thin sections, light/dark bands are formed annually, and age at death is determined by counting these bands. We employ synchrotron X-ray diffraction and X-ray fluorescence mapping to show the bands in Beluga whale cementum result from differences in mineral content and not from differences in collagen orientation as was concluded by others. Variation in Zn fluorescent intensity was found to be very sensitive indicator of changing biomineralization and suggest that Zn plays an important role this process.


Assuntos
Beluga/anatomia & histologia , Cemento Dentário/anatomia & histologia , Dente/anatomia & histologia , Animais , Cemento Dentário/diagnóstico por imagem , Mandíbula/anatomia & histologia , Dente/diagnóstico por imagem , Difração de Raios X
9.
Nanoscale ; 7(44): 18402-10, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26505175

RESUMO

Modern functional nanomaterials and devices are increasingly composed of multiple phases arranged in three dimensions over several length scales. Therefore there is a pressing demand for improved methods for structural characterization of such complex materials. An excellent emerging technique that addresses this problem is diffraction/scattering computed tomography (DSCT). DSCT combines the merits of diffraction and/or small angle scattering with computed tomography to allow imaging the interior of materials based on the diffraction or small angle scattering signals. This allows, e.g., one to distinguish the distributions of polymorphs in complex mixtures. Here we review this technique and give examples of how it can shed light on modern nanoscale materials.


Assuntos
Imageamento Tridimensional , Espalhamento a Baixo Ângulo , Tomografia Computadorizada por Raios X , Difração de Raios X , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Difração de Raios X/instrumentação , Difração de Raios X/métodos
10.
Calcif Tissue Int ; 97(3): 262-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25824581

RESUMO

The interface between collagen and the mineral reinforcement phase, carbonated hydroxyapatite (cAp), is essential for bone's remarkable functionality as a biological composite material. The very small dimensions of the cAp phase and the disparate natures of the reinforcement and matrix are essential to the material's performance but also complicate study of this interface. This article summarizes what is known about the cAp-collagen interface in bone and begins with descriptions of the matrix and reinforcement roles in composites, of the phases bounding the interface, of growth of cAp growing within the collagen matrix, and of the effect of intra- and extrafibrilar mineral on determinations of interfacial properties. Different observed interfacial interactions with cAp (collagen, water, non-collagenous proteins) are reviewed; experimental results on interface interactions during loading are reported as are their influence on macroscopic mechanical properties; conclusions of numerical modeling of interfacial interactions are also presented. The data suggest interfacial interlocking (bending of collagen molecules around cAp nanoplatelets) and water-mediated bonding between collagen and cAp are essential to load transfer. The review concludes with descriptions of areas where new research is needed to improve understanding of how the interface functions.


Assuntos
Densidade Óssea/fisiologia , Matriz Óssea/metabolismo , Osso e Ossos/metabolismo , Colágeno/metabolismo , Durapatita/metabolismo , Íons/metabolismo , Animais , Humanos
11.
Oper Dent ; 40(2): 218-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25268042

RESUMO

The aim of this study was to analyze the anticaries potential of pit and fissure sealants containing amorphous calcium phosphate (ACP) by synchrotron microtomography. Bovine enamel blocks (4×4 mm; n=50) were selected through surface hardness (Knoop) analysis. Slabs were obtained through cross-sections taken 1 mm from the border of the enamel. Five indentations, spaced 100 µm apart, were made 300 µm from the border. Ten specimens were prepared for each tested material (Ultraseal XT plus TM, Aegis, Embrace, Vitremer and Experimental Sealant). The materials were randomly attached to the sectioned surfaces of the enamel blocks and fixed with sticky wax. The specimens were submitted to pH cycling. After that, the surface hardness (SH1) was determined, and the blocks were submitted to synchrotron microcomputed tomography analysis to calculate the mineral concentration (ΔgHAp cm(-3)) at different areas of the enamel. The comparison between the SH1 and ΔgHAp cm(-3) showed a correlation for all groups (r=0.840; p<0.001). The fluoride groups presented positive values of ΔgHAp cm(-3), indicating a mineral gain that was observed mainly in the outer part of the enamel. The ACP showed mineral loss in the outer enamel compared with fluoride groups, although it inhibited the demineralization in the deeper areas of enamel. The combination of two remineralizing agents (fluoride and ACP) was highly effective in preventing demineralization.


Assuntos
Fosfatos de Cálcio/uso terapêutico , Cárie Dentária/prevenção & controle , Selantes de Fossas e Fissuras/uso terapêutico , Animais , Bovinos , Tomografia com Microscopia Eletrônica/métodos , Síncrotrons , Desmineralização do Dente/diagnóstico por imagem , Desmineralização do Dente/prevenção & controle
12.
Gene Ther ; 22(3): 247-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25503693

RESUMO

In an effort to develop a new therapy for prostate cancer (PCa) bone metastases, we have created Ad.dcn, a recombinant oncolytic adenovirus carrying the human decorin gene. Infection of PC-3 and DU-145, the human prostate tumor cells, with Ad.dcn or a non-replicating adenovirus Ad(E1-).dcn resulted in decorin expression; Ad.dcn produced high viral titers and cytotoxicity in human prostate tumor cells. Adenoviral-mediated decorin expression inhibited Met, the Wnt/ß-catenin signaling axis, vascular endothelial growth factor A, reduced mitochondrial DNA levels and inhibited tumor cell migration. To examine the antitumor response of Ad.dcn, PC-3-luc cells were inoculated in the left heart ventricle to establish bone metastases in nude mice. Ad.dcn, in conjunction with control replicating and non-replicating vectors were injected via tail vein. The real-time monitoring of mice, once a week, by bioluminescence imaging and X-ray radiography showed that Ad.dcn produced significant inhibition of skeletal metastases. Analyses of the mice at the terminal time point indicated a significant reduction in the tumor burden, osteoclast number, serum tartrate-resistant acid phosphatase 5b levels, osteocalcin levels, hypercalcemia, inhibition of cancer cachexia and an increase in the animal survival. Based on these studies, we believe that Ad.dcn can be developed as a potential new therapy for PCa bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias Ósseas/terapia , Decorina/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/metabolismo , Neoplasias da Próstata/terapia , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Decorina/genética , Decorina/farmacologia , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Masculino , Camundongos Nus , Vírus Oncolíticos/genética
13.
Acta Biomater ; 10(9): 3969-77, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24911530

RESUMO

Dentin contains 1-2µm diameter tubules extending from the pulp cavity to near the junction with enamel. Peritubular dentin (PTD) borders the tubule lumens and is surrounded by intertubular dentin (ITD). Differences in PTD and ITD composition and microstructure remain poorly understood. Here, a (∼200nm)(2), 10.1keV synchrotron X-ray beam maps X-ray fluorescence and X-ray diffraction simultaneously around tubules in 15-30µm thick bovine and equine specimens. Increased Ca fluorescence surrounding tubule lumens confirms that PTD is present, and the relative intensities in PTD and ITD correspond to carbonated apatite (cAp) volume fraction of ∼0.8 in PTD vs. 0.65 assumed for ITD. In the PTD near the lumen edges, Zn intensity is strongly peaked, corresponding to a Zn content of ∼0.9mgg(-1) for an assumed concentration of ∼0.4mgg(-1) for ITD. In the equine specimen, the Zn K-edge position indicates that Zn(2+) is present, similar to bovine dentin (Deymier-Black et al., 2013), and the above edge structure is consistent with spectra from macromolecules related to biomineralization. Transmission X-ray diffraction shows only cAp, and the 00.2 diffraction peak (Miller-Bravais indices) width is constant from ITD to the lumen edge. The cAp 00.2 average preferred orientation is axisymmetric (about the tubule axis) in both bovine and equine dentin, and the axisymmetric preferred orientation continues from ITD through the PTD to the tubule lumen. These data indicate that cAp structure does not vary from PTD to ITD.


Assuntos
Dentina/química , Animais , Cálcio/análise , Bovinos , Cristalografia por Raios X , Dentina/diagnóstico por imagem , Fluorescência , Cavalos , Radiografia , Espectroscopia por Absorção de Raios X , Zinco/análise
14.
Scanning ; 36(2): 231-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23630059

RESUMO

The relationship between the mineralization of peritubular dentin (PTD) and intertubular dentin (ITD) is not well understood. Tubules are quite small, diameter ∼2 µm, and this makes the near-tubule region of dentin difficult to study. Here, advanced characterization techniques are applied in a novel way to examine what organic or nanostructural signatures may indicate the end of ITD or the beginning of PTD mineralization. X-ray fluorescence intensity (Ca, P, and Zn) and X-ray diffraction patterns from carbonated apatite (cAp) were mapped around dentintubules at resolutions ten times smaller than the feature size (200 nm pixels), representing a 36% increase in resolution over earlier work. In the near tubule volumes of near-pulp, root dentin, Zn intensity was higher than in ITD remote from the tubules. This increase in Zn(2+), as determined by X-ray absorption near edge structure analysis, may indicate the presence of metalloenzymes or transcription factors important to ITD or PTD mineralization. The profiles of the cAp 00.2 X-ray diffraction rings were fitted with a pseudo-Voigt function, and the spatial and azimuthal distribution of these rings' integrated intensities indicated that the cAp platelets were arranged with their c-axes aligned tangential to the edge of the tubule lumen. This texture was continuous throughout the dentin indicating a lack of structural difference between in the Zn rich near-tubular region and the remote ITD.


Assuntos
Apatitas/análise , Cálcio/análise , Dentina/química , Fósforo/análise , Raiz Dentária/química , Zinco/análise , Animais , Bovinos , Espectrometria por Raios X , Difração de Raios X
15.
J Mech Behav Biomed Mater ; 5(1): 71-81, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22100081

RESUMO

Various methods are used to investigate the variability in elastic properties across a population of deciduous bovine incisor root dentin samples spanning different animals, incisor types, and locations within teeth. First, measurements of elastic strains by high-energy synchrotron X-ray scattering during compressive loading of dentin specimens provided the effective modulus--the ratio of applied stress to elastic phase strain--for the two main phases of dentin (hydroxyapatite crystals and mineralized collagen fibrils), shedding light on load transfer operating at the nanoscale between collagen and mineral phases. Second, Young's moduli were measured at the macroscale by ultrasonic time-of-flight measurements. Third, thermogravimetry quantified the volume fractions of hydroxyapatite, protein and water at the macroscale. Finally, micro-Computed Tomography determined spatial variations of the mineral at the sub-millimeter scale. Statistical comparison of the above properties reveals: (i) no significant differences for dentin samples taken from different animals or different incisor types but (ii) significant differences for samples taken from the cervical or apical root sections as well as from different locations between buccal and lingual edges.


Assuntos
Dentina , Módulo de Elasticidade , Animais , Bovinos , Dentina/diagnóstico por imagem , Dentina/metabolismo , Incisivo/diagnóstico por imagem , Incisivo/metabolismo , Teste de Materiais , Minerais/metabolismo , Especificidade de Órgãos , Termogravimetria , Ultrassonografia , Difração de Raios X , Microtomografia por Raio-X
16.
J Struct Biol ; 176(2): 203-11, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21821132

RESUMO

In this study, simultaneous diffraction and fluorescence mapping with a (250nm)(2), 10.1keV synchrotron X-ray beam investigated the spatial distribution of carbonated apatite (cAp) mineral and elemental Ca (and other cations including Zn) around dentin tubules. In 1µm thick sections of near-pulp root dentin, where peritubular dentin (PTD) is newly forming, high concentrations of Zn, relative to those in intertubular dentin (ITD), were observed adjacent to and surrounding the tubule lumens. Some but not all tubules exhibited hypercalcified collars (high Ca signal relative to the surrounding ITD), and, when present, the zone of high Ca did not extend around the tubule. Diffraction rings from cAp 00.2 and 11.2+21.1+30.0 reflections were observed, and cAp was the only crystal phase detected. Profiles of Ca, Zn and cAp diffracted intensities showed the same transitions from solid to tubule lumen, indicating the same cAp content and organization in ITD far from the tubules and adjacent to them. Further, the matching Ca and diffraction profiles demonstrated that all of the Ca is in cAp or that any noncrystalline Ca was uniformly distributed throughout the dentin. Variation of 00.2 and 11.2+21.1+30.0 diffracted intensity was consistent with the expected biaxial crystallographic texture. Extension of X-ray mapping from near 1µm resolution to the 250nm level, performed here for dentin and its tubules, will provide new understanding of other mineralized tissues.


Assuntos
Dentina/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Cobre/metabolismo , Dentina/anatomia & histologia , Manganês/metabolismo , Microscopia de Fluorescência , Microtomia , Espectrometria por Raios X , Difração de Raios X , Zinco/metabolismo
17.
J Biomech ; 44(2): 291-6, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21051040

RESUMO

High-energy synchrotron X-ray scattering (>60 keV) allows noninvasive quantification of internal strains within bone. In this proof-of-principle study, wide angle X-ray scattering maps internal strain vs position in cortical bone (murine tibia, bovine femur) under compression, specifically using the response of the mineral phase of carbonated hydroxyapatite. The technique relies on the response of the carbonated hydroxyapatite unit cells and their Debye cones (from nanocrystals correctly oriented for diffraction) to applied stress. Unstressed, the Debye cones produce circular rings on the two-dimensional X-ray detector while applied stress deforms the rings to ellipses centered on the transmitted beam. Ring ellipticity is then converted to strain via standard methods. Strain is measured repeatedly, at each specimen location for each applied stress. Experimental strains from wide angle X-ray scattering and an attached strain gage show bending of the rat tibia and agree qualitatively with results of a simplified finite element model. At their greatest, the apatite-derived strains approach 2500 µÎµ on one side of the tibia and are near zero on the other. Strains maps around a hole in the femoral bone block demonstrate the effect of the stress concentrator as loading increased and agree qualitatively with the finite element model. Experimentally, residual strains of approximately 2000 µÎµ are present initially, and strain rises to approximately 4500 µÎµ at 95 MPa applied stress (about 1000 µÎµ above the strain in the surrounding material). The experimental data suggest uneven loading which is reproduced qualitatively with finite element modeling.


Assuntos
Osso e Ossos/fisiologia , Estresse Mecânico , Animais , Osso e Ossos/anatomia & histologia , Bovinos , Durapatita/química , Fêmur/fisiologia , Fêmur/fisiopatologia , Análise de Elementos Finitos , Pressão , Ratos , Ratos Sprague-Dawley , Espalhamento de Radiação , Síncrotrons , Tíbia/fisiopatologia , Microtomografia por Raio-X/métodos , Raios X
18.
J Biomech ; 43(12): 2294-300, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20541209

RESUMO

High energy X-ray scattering (80.7keV photons) at station 1-ID of the Advanced Photon Source quantified internal strains as a function of applied stress in mature bovine tooth. These strains were mapped from dentin through the dentinoenamel junction (DEJ) into enamel as a function of applied compressive stress in two small parallelepiped specimens. One specimen was loaded perpendicular to the DEJ and the second parallel to the DEJ. Internal strains in enamel and dentin increased and, as expected from the relative values of the Young's modulus, the observed strains were much higher in dentin than in enamel. Large strain gradients were observed across the DEJ, and the data suggest that the mantle dentin-DEJ-aprismatic enamel structure may shield the near-surface volume of the enamel from large strains. In the enamel, drops in internal strain for applied stresses above 40MPa also suggest that this structure had cracked.


Assuntos
Esmalte Dentário/química , Esmalte Dentário/fisiopatologia , Dentina/química , Dentina/fisiopatologia , Animais , Fenômenos Biomecânicos , Bovinos , Módulo de Elasticidade , Técnicas In Vitro , Minerais/química , Estresse Mecânico , Difração de Raios X
19.
J Musculoskelet Neuronal Interact ; 10(1): 46-55, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20190379

RESUMO

Compared to force-resisting elements of the mammalian feeding apparatus, data on jaw-muscle plasticity are less common. This hinders our understanding of the role of force-producing structures in craniofacial development and integration. Thus, we investigated fiber-type abundance and cross-sectional area in the masseter muscle of growing rabbits subjected to diet-induced variation in masticatory stresses. Three loading cohorts were obtained as weanlings and raised until adult on different diets. Immediately following euthanasia, left-sided masseters were dissected away, weighed, and then divided into anterior, intermediate and posterior sections for fiber-type immunohistochemistry. These data were compared to mandibular proportions and biomineralization from the same subjects. Results indicate that growing mammals fed a tougher, fracture-resistant diet develop: absolutely and relatively lower numbers of Type I jaw-muscle fibers; absolutely larger fiber cross-sectional areas; and relative increases in the amount of Type II fibers. These analyses indicate that an early postweaning dietary shift can induce significant variation in muscle fiber types. Such norms of reaction are comparable to those observed in bony elements. Functionally, the processing of fracture-resistant foods results in jaw adductors potentially characterized by faster contraction times and higher force production capabilities, which may influence the frequency and amplitude of forces experienced by oral tissues.


Assuntos
Força de Mordida , Mandíbula/crescimento & desenvolvimento , Músculo Masseter/crescimento & desenvolvimento , Fibras Musculares Esqueléticas/fisiologia , Desenvolvimento Musculoesquelético/fisiologia , Sistema Estomatognático/crescimento & desenvolvimento , Adaptação Fisiológica/fisiologia , Animais , Fenômenos Biomecânicos , Comportamento Alimentar/fisiologia , Imuno-Histoquímica , Masculino , Mandíbula/anatomia & histologia , Mandíbula/diagnóstico por imagem , Músculo Masseter/citologia , Mastigação/fisiologia , Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/citologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares de Contração Lenta/citologia , Fibras Musculares de Contração Lenta/fisiologia , Coelhos , Sistema Estomatognático/anatomia & histologia , Estresse Mecânico , Microtomografia por Raio-X
20.
Acta Biomater ; 6(6): 2172-80, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19925891

RESUMO

The elastic properties of dentin, a biological composite consisting of stiff hydroxyapatite (HAP) nano-platelets within a compliant collagen matrix, are determined by the volume fraction of these two phases and the load transfer between them. We have measured the elastic strains in situ within the HAP phase of bovine dentine by high energy X-ray diffraction for a series of static compressive stresses at ambient temperature. The apparent HAP elastic modulus (ratio of applied stress to elastic HAP strain) was found to be 18+/-2GPa. This value is significantly lower than the value of 44GPa predicted by the lower bound load transfer Voigt model, using HAP and collagen volume fractions determined by thermo-gravimetric analysis. This discrepancy is explained by (i) a reduction in the intrinsic Young's modulus of the nano-size HAP platelets due to the high fraction of interfacial volume and (ii) an increase in local stresses due to stress concentration around the dentin tubules.


Assuntos
Dentina/química , Dente/química , Difração de Raios X/métodos , Animais , Bovinos , Módulo de Elasticidade , Dureza , Teste de Materiais , Estresse Mecânico , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...